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Abstract. Many methods have been developed to spatially normalize a
population of brain images for estimating a mean image as a population-
average atlas. However, methods for deriving a network atlas from a set
of brain networks sitting on a complex manifold are still absent. Learn-
ing how to average brain networks across subjects constitutes a key step
in creating a reliable mean representation of a population of brain net-
works, which can be used to spot abnormal deviations from the healthy
network atlas. In this work, we propose a novel network atlas estimation
framework, which guarantees that the produced network atlas is clean

(for tuning down noisy measurements) and well-centered (for being opti-
mally close to all subjects and representing the individual traits of each
subject in the population). Specifically, for a population of brain net-
works, we first build a tensor, where each of its frontal-views (i.e., frontal
matrices) represents a connectivity network matrix of a single subject in
the population. Then, we use tensor robust principal component analy-
sis for jointly denoising all subjects’ networks through cleaving a sparse
noisy network population tensor from a clean low-rank network tensor.
Second, we build a graph where each node represents a frontal-view of
the unfolded clean tensor (network), to leverage the local manifold struc-
ture of these networks when fusing them. Specifically, we progressively
shrink the graph of networks towards the centered mean network at-
las through non-linear di↵usion along the local neighbors of each of its
nodes. Our evaluation on the developing functional and morphological
brain networks at 1, 3, 6, 9 and 12 months of age has showed a bet-
ter centeredness of our network atlases, in comparison with the baseline
network fusion method. Further cleaning of the population of networks
produces even more centered atlases, especially for the noisy functional
connectivity networks.

1 Introduction

The study of brain connectivity propelled the development of the field of brain
connectomics, where the connectivity between di↵erent brain regions is usually
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measured using functional (e.g., resting state fMRI) or structural brain imaging
(e.g., di↵usion MRI) [1]. A connectome is a brain network or a graph, where
each node represents an anatomical/functional region of interest (ROI) in the
brain and the weight between two nodes encodes biological information. This
can also be represented as a symmetric matrix, where each of its values rep-
resents a connectivity measurement between a pair of ROIs. More importantly,
big connectomic data are rapidly exploding with emerging international research
initiatives aiming to massively collect large high-quality brain images with struc-
tural, di↵usion and functional modalities such as UK Biobank [2], the Develop-
ing Human Connectome Project in Europe, and the Baby Connectome Project,
which extends the Human Connectome Project from birth through early child-
hood [3]. Part of analyzing a large number of brain networks is to learn how
to e↵ectively average them, which indeed constitutes a key step in creating a
reliable and meaningful mean representation of a population of brains. This can
be used to spot deviations from the normal network atlas (e.g., cases with brain
disorder/disease) as well as provide a principled understanding of the developing
and aging trajectories of brain connectivities [1].

Broadly, connectomic data analysis methods targeted di↵erent neuroscientific
and clinical applications such as population-based (or individual-based) brain
parcellation using connectomes [4], extracting the connected core or backbone
of connectivity networks of a population [5], and connectome-based feature ex-
traction for brain disease/disorder diagnosis [1, 6]. However, the problem of ef-
fectively fusing a population of brain networks nested in a complex manifold,
which can shed new light on brain connectivity, was somewhat overlooked. On
the other hand, a variety of methods have been developed to spatially normalize
a population of brain images to estimate a ‘mean image’ (i.e., a population tem-
plate or image atlas), which were further refined to estimate a sharp atlas that
is well-centered and more representative of each individual image [7]. To fill in
this gap, we aim to estimate a population-based network atlas that is clean and
centered. Both these crucial traits are considered to define a good representative
atlas of a corrupted or noisy population of networks.

Specifically, since fMRI has low signal-to-noise ratio possibly induced by non-
neural noise, its derived functional connectivity strength between pairs of ROIs
can be spurious or noisy. To address this issue, particularly when producing
network atlas for functional networks, we first build a tensor where each of its
frontal-views represents a connectivity network matrix of a single subject in the
population. Since brain network is intrinsically sparse, we encourage sparsity in
its noisy components (i.e., sparse noise). Hence, we propose to use tensor robust
principal component analysis introduced in [8] to cleave a sparse noisy popula-
tion network tensor from a clean low-rank network tensor. Next, we propose to
estimate a well-centered atlas from the unfolded clean tensor. Since at a subject
level, some brain regions wire similarly to one another, a low-rank representa-
tion is appropriate for brain network atlas representation. Furthermore, at a
population level, since brain networks of di↵erent healthy subjects share similar



connectivity patterns, then jointly decomposing and denoising them may better
preserve their similarities.

Recently, Wang et al. introduced in [9] a robust method to non-linearly fuse
di↵erent matrices, each matrix encoding a specific type of genomic similarities
between a set of patients. Broadly, given N networks, each network is iteratively
updated through di↵using the global structure of the averaged remaining (N�1)
networks across its local structure. Then the fused network is obtained through
simply averaging the N di↵used networks. A key limitation of such an approach
is that it completely ignores the pairwise associations between di↵erent networks
in the di↵usion/fusion process. Particularly, it simply averages all remaining net-
works without considering their proximity or relationship to the current network.
To address this issue, we propose to explore the underlying data distribution dur-
ing the fusion process for network atlas estimation, through modeling of their
relationships using a graph as introduced in [10] for image atlas estimation. This
will better preserve the topology of the manifold, where the individual networks
sit as they smoothly di↵use and fuse toward a well-centered network. This is an
important characteristic of an atlas, where it occupies a position near to all the
individuals of a population, which implies that it well captures the individual
characteristics of each subject in the population while generating their mean. It
is worth noting that our graph shrinkage strategy di↵ers from [10] in two major
aspects: (1) our graph is made of graphs (connectomes) instead of images (i.e.,
a graph of graphs), and (2) the graph shrinkage is performed through di↵usion
instead of di↵eomorphic warping.

The main contributions of our work can be summarized as follows: (1) intro-
ducing the concept of a clean and centered network atlas to capture connectomic
data characteristics of a population, (2) proposing a joint denoising of brain
networks through modeling the network population as a tensor, (3) further im-
proving network fusion strategy introduced in [9] by modeling each frontal-view
of the unfolded clean tensor as a ‘network node’ in a graph that shrinks through

manifold-guided di↵usion, and (4) evaluating our approach on both functional
and morphological brain networks of developing infants.

2 Estimation of Clean and Centered Network Atlas using

Di↵usive-Shrinking Graphs

In this section, we briefly present the framework introduced in [9] for similarity
network fusion (SNF), and extend it to our aim. We denote tensors by boldface
Euler script letters, e.g., X . Matrices are denoted by boldface capital letters,
e.g., X, and scalars are denoted by lowercase letters, e.g., x. For easy reference
and enhancing the readability, we have summarized the major mathematical
notations in Table 1.

2.1 Conventional Similarity Network Fusion Method

Suppose we have a population of N brain networks, where each brain net-
work is subject-specific and can be represented as a graph (or connectome)



Table 1: Major mathematical notations used in this paper.
Mathematical notation Definition

X tensor in Rn1⇥n2⇥n3

X connectivity matrix in Rn1⇥n2 or frontal-view of tensor X
A population-based network atlas
Pk global normalization of the connecitivity matrix Xk of individual k
Sk local normalization of the connecitivity matrix Xk of individual k
Ni set of neighboring ROIs to the ith ROI in the brain network
Ng

k set of neighboring networks to a network Pk in a subgraph g
L tubal low-rank tensor (clean tensor)
Lk frontal-view of the clean tensor or brain network matrix
E sparse tensor (noise)

d(Lk,Lk0 ) distance between two brain networks Lk and Lk0
C = (VC , EC) connectome or brain network graph of a single subject

VC nodes or brain ROIs
EC edges connecting pairs of brain ROIs in a single subject

G = (VM , EM ) graph of brain networks representing the network population manifold
VM set of network nodes or brain networks in the population
EM edges connecting pairs of brain networks

C = (VC , EC). The vertices VC denote ROIs in the brain and the edges EC

are weighted by a connectivity strength. We represent edge weights by an m⇥m

similarity matrix X with X(i, j) denoting the connectivity between ROI i and
ROI j. Our goal is to estimate a network atlas A, that captures both the local
traits of each individual network Xk and the global traits of the population of
networks {X1, . . . ,Xk, . . . ,XN}. To this end, for each individual k in the pop-
ulation, we define a global matrix Pk that carries the connectivity strength of
each ROI to all other ROIs and a local matrix Sk that encodes the similarity to
nearest similar ROIs for each ROI in the brain network (or local a�nity in the
connectome graph C). These are defined as follows based on [9]:

Pk(i, j) =

(
Xk(i,j)

2
P

l 6=i Xk(i,l)
j 6= i

1/2, j = i

(1)

Sk(i, j) =

(
Xk(i,j)P

l2Ni
Xk(i,l)

j 2 Ni

0, otherwise

(2)

We identify the set of ROIs Ni in an individual brain network that are neigh-
bors to ROI i in the network graph C using KNN (K-nearest neighbors). Sk

carries the sparse local traits of each individual network Xk.
The basic idea of similarity network fusion proposed in [9] is to consider

each individual network Pk of the population as a single view, then iteratively
update it through di↵using the average global structure of other (N � 1) views
from the population along the fixed local sparse structure Sk of the network.
This is achieved through the following iterative equation:

P

t
k = Sk ⇥

✓P
k0 6=k Pt

k0
N�1

◆
⇥ S

T
k , where t 2 {0, . . . , t⇤} denotes the di↵usion

iteration number and T denotes the matrix transpose operator. After each it-
eration t, Pt

k is normalized using equation 1. Finally, following t

⇤ iterations,



the fused network atlas is generated by averaging all updated di↵used networks:
A = 1

N

PN
k=1 P

t⇤

k
Whereas at a network-level SNF explores the local inter-regional relation-

ships within each individual network through estimating the matrix S, at a
higher network manifold-level, it ignores the inter-network relationships during
the di↵usion process. In other words, when iteratively updating a single net-
work, it weighs equally the contributions of other networks, as mathematically

reflected by the di↵usion kernel

✓P
k0 6=k Pt

k0
N�1

◆
. Additionally, although the di↵u-

sion of a global network along the local structure of a single network Sk may
reduce some local noise in the original network X, it may overlook noise that
distributes randomly and sparsely in X. To alleviate both shortcomings, we first
propose to perform a joint denoising for all individual networks through model-
ing the network population as a tensor X , then we devise a di↵usive-shrinking

graph evolution strategy through locally exploring the clean network manifold
structure to estimate a well-centered network atlas.

2.2 Proposed Similarity Network Fusion through Di↵usive-

Shrinking Graph

In this section we address the aforementioned limitations and detail the three
steps for clean and centered network atlas estimation.

Fig. 1: Illustration of the proposed manifold-guided di↵usive-shrinking graphs

for network atlas estimation. (A) Modeling the manifold of brain networks as
a graph partitioned into homogeneous subgraphs, where similar networks are
clustered together. (B) Iterative sub-graph shrinking through locally di↵using
and fusing each network node with its most similar neighboring nodes, in the
direction of the global center of the manifold graph.



• Step 1: Tensor-based network population denoising. We first build
a network tensor X by defining each of its frontal-views as a brain network from
our population and then decompose this noisy network tensor into a tubal low-
rank tensor (i.e., clean) and a sparse tensor (i.e., noise). The tensor denoising
process is performed through mininizing the following equation using ADMM
[8]:

min
L,E

||L||⇤ + �||E||1, s.t. X = L+ E 2 Rn1⇥n2⇥n3 (3)

L represents the low-rank clean tensor whereas E denotes the sparse noisy
component of the tensor. In our case, n1 = n2 = m (number of brain ROIs)
and n3 = N (number of subjects in the population).The trade-o↵ parameter �

is automatically set to 1/
p
n1n3 as detailed in [8].

• Step 2: Tensor unfolding and graph building. Motivated by the fact
that a manifold representation can be e↵ectively used to model the nonlinearity
of samples in a population, we propose to model the manifold of brain networks
using a graph for a more e↵ective fusion of populations of networks with di↵erent
distributions. Notably, graphs have demonstrated superb capability to model the
nonlinearlity of samples on a manifold [10]. To do so, we first unfold the estimated
clean tensor L into its frontal clean brain network views {L1, . . . ,Lk, . . . ,LN}.
Next, we build a graph G = (EM , VM ) to model the structure of the clean
network population manifold. Each node in VM represents a brain network Lk (or
a graph). To compute a similarity between two networks Lk and Lk0 , we use the
distance metric d(Lk,Lk0) = 1� (trace(Lk⇥Lk0))/||Lk||F ⇥ ||Lk0 ||F ) with || · ||F
denoting Frobenius norm. Then, we define the symmetric N⇥N weighted graph
edge matrix EM , where two networks Li and Lj are connected if d(Li,Lj) 6= 0
and we set the weights on the diagonal to 0 to avoid self-connectedness. Our
‘graph of graphs’ is then built by implementing the following steps:

(1) Apply a�nity propagation (AP) clustering method to VM [11] to group
similar network nodes (i.e., networks) using the network similarity distance d

and define their representatives {Pr}, so they can be fused in the same way.
(2) On a local level, each identified AP cluster defines a sub-graph, where

similar nodes are connected with a weighted edge using distance d;
(3) To ensure that the local fusion of each node with nearby nodes is smooth,

we average the representatives of all sub-graphs to generate a center global net-
work PC that will guide the fusion of sub-graphs.

(4) On a higher level, link all sub-graphs through connecting the representa-
tives of all subgraphs to the global center.

Based on this graph, all brain networks in the manifold can be progressively
di↵used and fused in accordance to their connected networks, in the direction of
the global center as illustrated in Fig. 1.

• Step 3: Manifold-guided graph shrinkage through di↵usion. To
ensure that the local fusion of each network node with nearby nodes is smooth, we
average the representatives of all sub-graphs to generate a center global network.
Then, we move each node (i.e., locally update each network) by fusing it with its
closest neighboring nodes (i.e., networks) through an iterative process as in [10]



in the direction of the global center. Since the representative nodes are moved,
we subsequently update the global center. We then repeat these two steps while
updating the global center until it becomes stable. Eventually, the as the original
graph shrinks where all nodes will locate at the vicinity of the global center PC ,
where their averaging is more reliable and meaningful to produce the sought
‘network atlas’ (Fig. 1). The steps for di↵usive-shrinking graph for network
atlas estimation are detailed in Algorithm 1, where where we denote by ⇧ the
di↵usion at a sub-graph level in G and by ⇧ the di↵usion at a higher level in G.

3 Results

Evaluation dataset. We evaluated the proposed framework on 35 typically
developing infants, where each subject has 5 serial T1-w, T2-w MRI and resting-
state fMRI (rsfMRI) scans acquired at 1, 3, 6, 9 and 12 months of age. We
generated two types of brain networks for each subject.

Algorithm 1 Di↵usive-shrinking graph strategy for network atlas estimation

1: INPUTS:
Set of N brain networks: {L1, . . . ,Lk, . . .LN}

2: for each brain network Lk do
3: for each pair of ROIs i and j in Lk do

Sk(i, j) =
Lk(i,j)

2
P

l 6=i Lk(i,l) for j 2 Ni, otherwise assign 0 (local network structure)

P0
k(i, j) =

Lk(i,j)
2
P

l 6=i Lk(i,l) if j 6= i, otherwise assign 1/2 (global network structure)

4: end for
5: end for
6: Build graph G = (EM , VM ) to model the network manifold structure using the distance d as a

network similarity metric
7: Partition G into a set of sub-graphs and define the representative network nodes for each cluster

using a�nity propagation
8: Compute the graph global center PC by averaging all the representative brain networks
9: For t = 0, setP0

C = PC

10: for each di↵usion iteration t 2 {1, . . . , t⇤} do
11: while global center Pt

C is not stable do
12: for each subgraph g of G do (⇧)
13: for each network Pt

k in the subgraph g do
Di↵use the network along its Ng

k nearest nodes in g, which are close to the sub-graph
representative node and update its position in the graph using:

Pt+1
k = Sk ⇥ (

P
k02N

g
k

Pt
k0

N
g
k

) ⇥ ST
k

Pt+1
k =

Pt+1
k

+(Pt+1
k

)T

2 (network normalization after di↵usion)

14: end for
15: for each subgraph representative Pt+1

r do (⇧)
Pt+1

r = Sr ⇥ Pt
C ⇥ ST

r (move representative towards the center Pt
C)

Pt+1
r =

Pt+1
r +(Pt+1

r )T

2 (representative normalization)

Update global center Pt
C by averaging the updated representative networks

16: end for
17: end for
18: end while
19: end for
20: OUTPUT: Fusion step to produce a clean and centered network atlas: A = 1

N

PN
k=1 Pt⇤

k



Functional Brain Networks. After rsfMRI pre-processing (including motion
correction), we performed infant brain image longitudinal registration from na-
tive space to MNI space using GLIRT where each rsfMRI was partitioned into
116 ROIs using AAL template, which includes both cerebral and cerebellar re-
gions. For each subject, we computed the mean fMRI time-series signal in each
ROI. Then, we created the 116 ⇥ 116 functional connectivity matrix where the
connectivity strength between a pair of ROIs represents the correlation between
their mean functional signals.

Morphological Brain Networks. After rigid alignment of longitudinal and
cross-sectional infant structural MR images (i.e., T1-w and T2-w) and brain
tissue segmentation, we reconstructed and parcellated the cortical surfaces into
35 cortical regions using in-house developed tools [12]. By computing the pair-
wise absolute di↵erence in cortical thickness between pairs of regions of interest,
we generate a 35⇥ 35 morphological connectivity matrix for each time point in
each subject.

Evaluation. To evaluate the centeredness of the estimated brain network at-
las, we compute the mean distance between the estimated network atlas and
each individual network in the population using as metric d. Fig. 2 shows the
mean distance computed using the proposed network atlas estimation method
and the conventional SNF method [9]. The smaller the evaluation distance the
more centered is the atlas with respect to the individual networks on the net-
work manifold. We used paired t-test to evaluate the statistical significance of
our method in comparison with [9]. Clearly, our method produced more cen-
tered network atlases than conventional SNF (p << 0.001) at all acquisition
timepoints (Fig. 2). When using functional networks, the denoising step led to
more centered network atlases for both our method and SNF (Fig. 2). On the
other hand, denoising morphological networks did not further improve the cen-
teredness of the estimated atlases at di↵erent timepoints, which can be explained
by the fact that fMRI is much noisier than structural T1/T2-w MR imaging.
Fig. 3-4 show that at each di↵usion iteration, our method generated rapidly
a more centered network atlas than the conventional SNF method. Fig. 3-B
displays the estimated functional network atlases using our method at di↵erent
timepoints. A dramatic functional connectivity change occurs between 1 and 3
months of age, followed by a few sparsely distributed changes between 3 and 12
months of age. We also notice that in Fig. 4-B many cortical thickness-based
connectivities become weaker (i.e. smaller absolute di↵erence) as we transition
from 1 to 3 months of age, which implies that di↵erent brain regions develop
more similar cortical thicknesses. On the other hand, brighter connectivities ap-
pear in morphological network atlases between 3 and 12 months of ages, which
shows that the cortical thickness becomes more spatially heterogeneous with age.

4 Discussion and conclusion

We have proposed a di↵usive-shrinking graph strategy that follows the local
manifold structure of a set of brain networks to gradually fuse them through a



Fig. 2: Clean and centered network atlas evaluation. (A) Mean distance between
the estimated network atlas and all individual networks in the population using
conventional SNF method and our framework, with and without denoising. (B-C)
Network denoising using tensor robust principal component analysis and fusion
using the proposed di↵usive-shriking graph strategy. We display both functional
(B) and morphological (C) estimated network atlases at 9 months of age.

di↵usion process until reaching the final network atlas. Our results showed that
our strategy significantly improves the atlas centeredness and pre-denoising (es-
pecially for functional networks) further centers the estimated clean atlases. Ad-
ditionally, our method converges around 5-10 times faster than the conventional
SNF method. While SNF converges when the number of iterations t exceeds 20
as noted in [9], the optimal number of iterations required for our method to con-
verge is t

⇤ ⇠ 2 for functional networks and t

⇤ ⇠ 4 for morphological networks.
Precisely, while the SNF mean distance slowly decreases with each di↵usion it-
eration as the atlas becomes more centered (see red and white bars in Fig. 3
and dark blue and pink bars in Fig. 4), our mean distance dramatically drops
during the first few iterations (black vs. yellow bars (without denoising) and red
vs. white bars (with denoising) in Fig. 3) and then slightly increases and re-
mains stable. This convergence behavior shows first that, following the manifold
structure when di↵using, speeds up the convergence process to the optimal t⇤,
and second that over-di↵usion t > t

⇤ decenters the network atlas as it becomes
closer to the identify matrix. Clearly, our method have two advantages over con-
ventional SNF: (1) a better atlas centeredness (shown in Fig. 2-A), and (2) a
significantly decreased computational time (shown in Fig. 3-4). We also notice
that, when denoising, the diagonals of the denoised tensor may take non- zero
values. This is not problematic since the di↵usion process automatically resets
these values using Eq. 1.

It is worth noting that the proposed network atlas estimation framework is
appropriate for large datasets with thousands of networks where the network
distribution is complex. Indeed, to capture this complexity, Algorithm 1 can



include several hierarchical levels of subgraphs and their representatives that pro-
gressively di↵use as they approach the global center of the whole graph. Since
our framework overlooks the network distribution in the temporal domain, we
will further extend it by enforcing temporal consistency to produce a longitudinal
network atlas. Eventually, building clean and centered atlases for healthy indi-
viduals as well as patients with a specific brain disease or disorder will help us
better identify population-based distinctive changes in brain connectivity, thereby
providing reliable features or biomarkers for an accurate diagnosis.
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Fig. 3: (A) Evaluation of the estimated functional network atlases for developing
infants (1, 3, 6, 9 and 12 months of age) using the conventional similarity net-
work fusion method introduced in [9] and our proposed di↵usive-shrinking graph
method. We display the mean distance between estimated network atlas and all
individuals in the population of networks at each di↵usion iteration, with and
without denoising. The dashed gray line shows that our method rapidly achieves
the best accuracy within the first di↵usion iterations (t⇤ ⇠ 2). (B) The estimated
functional network atlases using our method.



Fig. 4: (A) Evaluation of the estimated morphological network atlases for devel-
oping infants (1, 3, 6, 9 and 12 months of age) using the conventional similarity
network fusion method introduced in [10] and our proposed di↵usive-shrinking
graph method. We display the mean distance between estimated network at-
las and all individuals in the population of networks at each di↵usion iteration,
with and without denoising. The dashed gray line shows that our method rapidly
achieves the best accuracy within the first di↵usion iterations (t⇤ ⇠ 4). (B) The
estimated morphological network atlases using our method.
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